Improved Sensitivity MEMS Cantilever Sensor for Terahertz Photoacoustic Spectroscopy
نویسندگان
چکیده
In this paper, a microelectromechanical system (MEMS) cantilever sensor was designed, modeled and fabricated to measure the terahertz (THz) radiation induced photoacoustic (PA) response of gases under low vacuum conditions. This work vastly improves cantilever sensitivity over previous efforts, by reducing internal beam stresses, minimizing out of plane beam curvature and optimizing beam damping. In addition, fabrication yield was improved by approximately 50% by filleting the cantilever's anchor and free end to help reduce high stress areas that occurred during device fabrication and processing. All of the cantilever sensors were fabricated using silicon-on-insulator (SOI) wafers and tested in a custom built, low-volume, vacuum chamber. The resulting cantilever sensors exhibited improved signal to noise ratios, sensitivities and normalized noise equivalent absorption (NNEA) coefficients of approximately 4.28 × 10(-10) cm(-1)·WHz(-1/2). This reported NNEA represents approximately a 70% improvement over previously fabricated and tested SOI cantilever sensors for THz PA spectroscopy.
منابع مشابه
Peizoresistive Mems Cantilever based Co2 Gas Sensor
A study about the piezoresistive Micro-Electro-Mechanical Systems (MEMS) cantilever for a chemical sensitive mass based sensor has been carried out to enhance sensor sensitivity. The sensitive region attracts the CO2 molecules there by introducing the stress concentration region (SCR). Three types of SCR geometry designs were first analysed using Intellisuite software to study the effect of str...
متن کاملPeizoresistive MEMS Cantilever based CO2 Gas Sensor
A study about the piezoresistive Micro-Electro-Mechanical Systems (MEMS) cantilever for a chemical sensitive mass based sensor has been carried out to enhance sensor sensitivity. The sensitive region attracts the CO2 molecules there by introducing the stress concentration region (SCR). Three types of SCR geometry designs were first analysed using Intellisuite software to study the effect of str...
متن کاملPhotoacoustic Chemical Sensing: Ultracompact Sources and Standoff Detection
Photoacoustic spectroscopy (PAS) is a useful monitoring technique that is well suited for trace detection of gaseous and condensed media. We have previously demonstrated favorable PAS gas detection characteristics when the system dimensions are scaled to a micro-system design. This design includes quantum cascade laser (QCL)-based microelectromechanical systems (MEMS)-scale photoacoustic sensor...
متن کاملImproved Tuning Fork for Terahertz Quartz-Enhanced Photoacoustic Spectroscopy
We report on a quartz-enhanced photoacoustic (QEPAS) sensor for methanol (CH₃OH) detection employing a novel quartz tuning fork (QTF), specifically designed to enhance the QEPAS sensing performance in the terahertz (THz) spectral range. A discussion of the QTF properties in terms of resonance frequency, quality factor and acousto-electric transduction efficiency as a function of prong sizes and...
متن کاملDesign and Analysis of MEMS Piezoresistive SiO2 Cantilever-based Sensor with Stress Concentration Region for Biosensing Applications
This paper uses finite element method to obtain the optimal performance of piezoresistive microcantilever sensor by optimizing the geometrical dimension of both cantilever and piezoresistor. A 250 μm x 100 μm x 1 μm SiO2 cantilever integrated with 0.2 μm thick Si piezoresistor was used in this study. The sensor performance was measured on the basis of displacement sensitivity and surface stress...
متن کامل